Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315701

RESUMO

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17ß-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Aromatase , Transplante de Medula Óssea , Ginecomastia , Infertilidade Masculina , Erros Inatos do Metabolismo , Camundongos , Animais , Masculino , Aromatase/genética , Aromatase/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Porosidade , Camundongos Endogâmicos C57BL , Estrogênios , Estradiol , Células da Medula Óssea/metabolismo , Coluna Vertebral/metabolismo , Camundongos Knockout
2.
Clin Cancer Res ; 27(17): 4794-4806, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210685

RESUMO

PURPOSE: Intratumoral heterogeneity (ITH) challenges the molecular characterization of clear cell renal cell carcinoma (ccRCC) and is a confounding factor for therapy selection. Most approaches to evaluate ITH are limited by two-dimensional ex vivo tissue analyses. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can noninvasively assess the spatial landscape of entire tumors in their natural milieu. To assess the potential of DCE-MRI, we developed a vertically integrated radiogenomics colocalization approach for multi-region tissue acquisition and analyses. We investigated the potential of spatial imaging features to predict molecular subtypes using histopathologic and transcriptome correlatives. EXPERIMENTAL DESIGN: We report the results of a prospective study of 49 patients with ccRCC who underwent DCE-MRI prior to nephrectomy. Surgical specimens were sectioned to match the MRI acquisition plane. RNA sequencing data from multi-region tumor sampling (80 samples) were correlated with percent enhancement on DCE-MRI in spatially colocalized regions of the tumor. Independently, we evaluated clinical applicability of our findings in 19 patients with metastatic RCC (39 metastases) treated with first-line antiangiogenic drugs or checkpoint inhibitors. RESULTS: DCE-MRI identified tumor features associated with angiogenesis and inflammation, which differed within and across tumors, and likely contribute to the efficacy of antiangiogenic drugs and immunotherapies. Our vertically integrated analyses show that angiogenesis and inflammation frequently coexist and spatially anti-correlate in the same tumor. Furthermore, MRI contrast enhancement identifies phenotypes with better response to antiangiogenic therapy among patients with metastatic RCC. CONCLUSIONS: These findings have important implications for decision models based on biopsy samples and highlight the potential of more comprehensive imaging-based approaches.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/genética , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética/métodos , Genômica por Radiação , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
Contrast Media Mol Imaging ; 2018: 2082154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534026

RESUMO

Widespread use of screening mammography has recently increased the detection of breast microcalcifications. These nonpalpable microcalcifications with specific features in breast tissues are clinically considered an early indicator of breast carcinoma. Our goal in this study was to develop a murine breast microcalcification model for optimizing in vivo imaging. Recombinant human BMP-2 was expressed in E. coli, and the purified bioactive protein was used as inducing factor for the production of breast microcalcifications in a murine animal model. Syngeneic breast tumors were obtained by injection of MDA-MB-231 human breast cancer cells with Matrigel into the mammary fat pad of female nude mice. Different doses of bioactive rhBMP-2 were administered either as single or multiple intraperitoneal injections or directly into tumor on a weekly basis. Three weeks after the first injection of rhBMP-2, the microcalcification of breast tumor was detected by microcomputed tomography followed by intravenous injection of radiotracer [18F] Sodium fluoride for positron emission tomography imaging. Our findings indicate that rhBMP-2 induced microcalcifications of breast tumor by both systemic and direct injection of rhBMP-2 into tumors in a dose-dependent manner. Although little is known about the molecular mechanism of microcalcification, here we report a new murine model of human breast tumor induced microcalcification by rhBMP-2 to optimize in vivo imaging methods and to study the role of BMP-2 as a mediator of pathological mineralization and bone-like microcalcification formation in breast tumor. This BMP-2-induced microcalcification model may allow us to discriminate the type of microcalcification in tumors and to perform quantitative analysis on the calcification as a new detection strategy for early identification of pathological mineralization of breast tissues in women.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Neoplasias da Mama/diagnóstico por imagem , Calcinose/induzido quimicamente , Transplante Heterólogo/métodos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Calcinose/diagnóstico , Linhagem Celular , Feminino , Radioisótopos de Flúor , Humanos , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Fluoreto de Sódio/administração & dosagem , Microtomografia por Raio-X
4.
Int J Mol Sci ; 19(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150605

RESUMO

Pancreatic ß-cell dysfunction and death contribute to the onset of diabetes, and novel strategies of ß-cell function and survival under diabetogenic conditions need to be explored. We previously demonstrated that Isx9, a small molecule based on the isoxazole scaffold, drives neuroendocrine phenotypes by increasing the expression of genes required for ß-cell function and improves glycemia in a model of ß cell regeneration. We further investigated the role of Isx9 in ß-cell survival. We find that Isx9 drives the expression of Calbindin-D28K (D28K), a key regulator of calcium homeostasis, and plays a cytoprotective role through its calcium buffering capacity in ß cells. Isx9 increased the activity of the calcineurin (CN)/cytoplasmic nuclear factor of the activated T-cells (NFAT) transcription factor, a key regulator of D28K, and improved the recruitment of NFATc1, cAMP response element-binding protein (CREB), and p300 to the D28K promoter. We found that nutrient stimulation increased D28K plasma membrane enrichment and modulated calcium channel activity in order to regulate glucose-induced insulin secretion. Isx9-mediated expression of D28K protected ß cells against chronic stress induced by serum withdrawal or chronic inflammation by reducing caspase 3 activity. Consequently, Isx9 improved human islet function after transplantation in NOD-SCID mice in a streptozotocin-induced diabetes model. In summary, Isx9 significantly regulates expression of genes relevant to ß cell survival and function, and may be an attractive therapy to treat diabetes and improve islet function post-transplantation.


Assuntos
Calbindinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Isoxazóis/farmacologia , Tiofenos/farmacologia , Animais , Calbindinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Ratos
5.
Magn Reson Med ; 75(5): 1875-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26033357

RESUMO

PURPOSE: Chemical exchange saturation transfer (CEST) is a contrast mechanism enhancing low-concentration molecules through saturation transfer from their exchangeable protons to bulk water. Often many scans are acquired to form a Z-spectrum, making the CEST method time-consuming. Here, an ultrafast localized CEST-spectroscopy with PRESS (UCEPR) is proposed to obtain the entire Z-spectrum of a voxel using only two scans, significantly accelerating CEST. THEORY AND METHODS: The approach combines ultrafast nonlocalized CEST spectroscopy with localization using PRESS. A field gradient is applied concurrently with the saturation pulse producing simultaneous saturation of all Z-spectrum frequencies that are also spatially encoded. A readout gradient during data acquisition resolves the spatial dependence of the CEST responses into frequency. UCEPR was tested on a 3T scanner both in phantoms and in vivo. RESULTS: In phantoms, a fast Z-spectroscopy acquisition of multiple pH-variant iopamidol samples was achieved with four- to seven-fold acceleration as compared to the conventional CEST methods. In vivo, amide proton transfer (APT) in white matter of healthy human brain was measured rapidly in 48 s and with high frequency resolution (≤ 0.2 ppm). CONCLUSION: Compared with conventional CEST methods, UCEPR has the advantage of rapidly acquiring high-resolution Z-spectra. Potential in vivo applications include ultrafast localized Z-spectroscopy, quantitative, or dynamic CEST studies.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Espectrofotometria/métodos , Encéfalo/fisiologia , Meios de Contraste/química , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Iopamidol/química , Prótons , Ondas de Rádio , Água/química
6.
Biochem Biophys Res Commun ; 465(3): 414-420, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26260319

RESUMO

Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance.


Assuntos
Calbindina 1/genética , Fatores de Transcrição NFATC/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição TFII/genética , Animais , Sequência de Bases , Sítios de Ligação , Meios de Cultura Livres de Soro , Cães , Células HEK293 , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica
7.
Am J Nucl Med Mol Imaging ; 1(1): 65-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23133797

RESUMO

Non-invasive detection of vascular endothelial growth factor receptor 2 (VEGFR2) by positron emission tomography (PET) would allow the evaluation of tumor vascular activity in vivo. Recently, a dimeric peptoid, GU40C4, was reported as a highly potent antagonist of VEGFR2 activation inhibiting angiogenesis and tumor growth in vivo. The purpose of this work was to evaluate the potential of this peptoid for PET imaging of VEGFR2 expression. To label GU40C4 and a control peptoid with a positron emitter, (64)Cu (t(1/2) = 12.7 h; ß(+): 0.653 MeV, 17.4%), a cysteine was introduced to the C-terminus of the peptoids and then conjugated to a bifunctional chelator (DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) through the maleimide-thiol coupling chemistry. The in vitro binding assay showed a negligible effect of the DOTA conjugation on the VEGFR2 binding affinity of GU40C4. Both peptoid conjugates were efficiently labeled with (64)Cu in high radiochemical yields (> 90%); the specific activity was in the range of 10 - 80 GBq/µmol. PET imaging evaluation using a prostate cancer xenograft (PC3) mouse model showed that (64)Cu-DOTA-GU40C4 had a prominent and steady accumulation in the VEGFR2 positive PC3 tumors (2.25 ± 0.24, 2.15 ± 0.34, and 1.90 ± 0.18 %ID/g at 1, 4, and 20 h p.i., respectively; n = 3), which is significantly higher than the control peptoid conjugate (0.3 - 0.5 %ID/g; p < 0.001 at 1, 4, and 20 h p.i.). Interestingly, the mouse salivary glands were also clearly visualized by (64)Cu-DOTA-GU40C4 (3.17 ± 0.25, 3.00 ± 0.36, and 1.83 ± 0.21 %ID/g at 1, 4, and 20 h p.i., respectively; n = 3) rather than its control peptoid conjugate. VEGFR2 expression in the salivary glands was shown by polymerase chain reaction (PCR) assay. Our results demonstrate that (64)Cu-DOTA-GU40C4 can be used to image the expression of VEGFR2 in vivo.

8.
J Bone Miner Res ; 26(2): 298-307, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20734455

RESUMO

Estrogen regulation of the male skeleton was first clearly demonstrated in patients with aromatase deficiency or a mutation in the ERα gene. Estrogen action on the skeleton is thought to occur mainly through the action of the nuclear receptors ERα and ERß. Recently, in vitro studies have shown that the G protein-coupled receptor GPR30 is a functional estrogen receptor (ER). GPR30-deficient mouse models have been generated to study the in vivo function of this protein; however, its in vivo role in the male skeleton remains underexplored. We have characterized size, body composition, and bone mass in adult male Gpr30 knockout (KO) mice and their wild-type (WT) littermates. Gpr30 KO mice weighed more and had greater nasal-anal length (p < .001). Both lean mass and percent body fat were increased in the KO mice. Femur length was greater in Gpr30 KO mice, as was whole-body, spine, and femoral areal bone mineral density (p < .01). Gpr30 KO mice showed increased trabecular bone volume (p < .01) and cortical thickness (p < .001). Mineralized surface was increased in Gpr30 KO mice (p < .05). Bromodeoxyuridine (BrdU) labeling showed greater proliferation in the growth plate of Gpr30 KO mice (p < .05). Under osteogenic culture conditions, Gpr30 KO femoral bone marrow cells produced fewer alkaline phosphatase-positive colonies in early differentiating osteoblast cultures but showed increased mineralized nodule deposition in mature osteoblast cultures. Serum insulin-like growth factor 1 (IGF-1) levels were not different. These data suggest that in male mice, GPR30 action contributes to regulation of bone mass, size, and microarchitecture by a mechanism that does not require changes in circulating IGF-1.


Assuntos
Osso e Ossos/fisiologia , Receptores Acoplados a Proteínas G/genética , Absorciometria de Fóton/métodos , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Osso e Ossos/metabolismo , Bromodesoxiuridina/farmacologia , Densitometria/métodos , Estrogênios/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Osteoblastos/citologia , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/deficiência
9.
Endocrinology ; 151(4): 1643-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20194728

RESUMO

Lack of estrogens affects male physiology in a number of ways, including severe changes in liver metabolism that result in lipid accumulation and massive hepatic steatosis. Here we investigated whether estrogen deficiency may alter the functionality and permeability properties of liver mitochondria using, as an experimental model, aromatase knockout (ArKO) male mice, which cannot synthesize endogenous estrogens due to a disruption of the Cyp19 gene. Liver mitochondria isolated from ArKO mice displayed increased activity of the mitochondrial respiratory complex IV compared with wild-type mice and were less prone to undergo cyclosporin A-sensitive mitochondrial permeability transition (MPT) induced by calcium loading. The altered permeability properties of the mitochondrial membranes were not due to changes in reactive oxygen species, ATP levels, or mitochondrial membrane potential but were associated with increased content of the phospholipid cardiolipin, structural component of the mitochondrial membranes and regulator of the MPT pore, and with increased mitochondrial protein levels of Bcl-2 and the adenine nucleotide translocator (ANT), regulator and component of the MPT pore, respectively. Real-time RT-PCR demonstrated increased mRNA levels for Bcl-2 and ANT2 but not for the ANT1 isoform in ArKO livers. Supplementation of 17beta-estradiol retrieved ArKO mice from massive hepatic steatosis and restored mitochondrial permeability properties, cardiolipin, Bcl-2, and ANT2 levels. Overall, our findings demonstrate an important role of estrogens in the modulation of hepatic mitochondrial function and permeability properties in males and suggest that estrogen deficiency may represent a novel positive regulator of Bcl-2 and ANT2 proteins, two inhibitors of MPT occurrence and powerful antiapoptotic molecules.


Assuntos
Aromatase/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Translocador 2 do Nucleotídeo Adenina/genética , Translocador 2 do Nucleotídeo Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Western Blotting , Cardiolipinas/metabolismo , Fracionamento Celular , Estradiol/farmacologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Tamanho do Órgão/genética , Permeabilidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Nucl Med ; 50(8): 1332-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19617332

RESUMO

UNLABELLED: Tumor hypoxia is often associated with resistance to chemotherapy. Multidrug resistance type 1 (MDR1) protein is a member of the adenosine triphosphate binding cassette (ABC) proteins, some of which are involved in the multidrug resistance (MDR) phenotype in tumors. Many studies have focused on the role of these proteins in modulating drug resistance, but their effect on retention of imaging agents is less well studied. To study the role of MDR1 expression on the accumulation of (64)Cu-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) and (64)Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) ((64)Cu-PTSM) in human tumors in vitro and in vivo, we used a model system composed of a low MDR1-expressing parent uterine sarcoma cell line and a daughter cell line selected for overexpression of MDR1. Aromatase knockout (ArKO) mice that spontaneously developed liver tumors were used as an additional in vivo model to study the effect of MDR expression on (64)Cu-ATSM and -PTSM retention. METHODS: Biodistribution experiments after injection of (64)Cu-ATSM or -PTSM were performed in wild-type mice, ArKO mice, and ArKO mice bearing liver tumors (n = 3-5/group), and in nude mice bearing human tumor xenografts for in vivo PET/CT. Liver expression of Abcb1a and Abcb1b, the MDR1 proteins in mouse liver, was determined by real-time polymerase chain reaction. (64)Cu-ATSM and -PTSM accumulation and efflux studies were conducted in tumor cell lines. The uptake experiments were repeated after knockdown of MDR1 protein expression using MDR1-specific small interfering RNAs. RESULTS: In vivo, the hepatic tumors had a lower percentage injected dose per gram of (64)Cu-ATSM or -PTSM and more highly expressed Abcb1b than did wild-type liver or nontumor-bearing ArKO liver. High MDR1-expressing tumors showed lower tracer activity on PET/CT images. In vitro, cells highly expressing MDR1 had significantly decreased (64)Cu-ATSM and -PTSM retention and enhanced efflux. Knockdown of MDR1 expression significantly enhanced the (64)Cu-ATSM and -PTSM retention and decreased the efflux in MDR1-positive cells. CONCLUSION: The expression of MDR1 glycoprotein (or its equivalents in mice) affects the retention of (64)Cu-ATSM and -PTSM in the human and murine tumors tested. These results may have implications for clinical hypoxia imaging in tumors and the therapeutic efficacy of (64)Cu-ATSM.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Compostos Organometálicos/farmacocinética , Tiossemicarbazonas/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Complexos de Coordenação , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Taxa de Depuração Metabólica , Camundongos , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
11.
Bioorg Med Chem Lett ; 18(17): 4789-93, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18692394

RESUMO

A hybrid compound (DO3A-BP) featuring a radiometal bifunctional chelator (1,4,7,10-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid, DOTA) and an osteoclast-targeting moiety (bisphosphonate) was designed and synthesized. The (111)In-labeled complex of DO3A-BP showed significantly elevated uptake in osteoclasts compared to the undifferentiated adherent bone marrow derived cells. Biodistribution studies revealed a favorable tissue distribution profile in normal mice with high bone uptake and long retention, and low or negligible accumulation in non-target organs.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Diagnóstico por Imagem , Difosfonatos/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Osteoclastos/metabolismo , Animais , Neoplasias Ósseas/secundário , Células Cultivadas , Difosfonatos/química , Difosfonatos/farmacocinética , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacocinética , Radioisótopos de Índio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Cintilografia
12.
J Bone Miner Res ; 22(12): 1893-902, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17708714

RESUMO

UNLABELLED: Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling. INTRODUCTION: The incidence of renal stones increases in women after menopause, implicating a possible role for estrogen deficiency. We used the aromatase deficient (ArKO) mouse, a model of estrogen deficiency, to test the hypothesis that estrogen deficiency would increase urinary calcium excretion and alter the expression of molecular regulators of renal calcium reabsorption. MATERIALS AND METHODS: Adult female wildtype (WT), ArKO, and estradiol-treated ArKO mice (n = 5-12/group) were used to measure urinary calcium in the fed and fasting states, relative expression level of some genes involved in calcium reabsorption in the distal convoluted tubule by real-time PCR, and protein expression by Western blotting or immunohistochemistry. Plasma membrane calcium ATPase (PMCA) activity was measured in kidney membrane preparations. ANOVA was used to test for differences between groups followed by posthoc analysis with Dunnett's test. RESULTS: Compared with WT, urinary Ca:Cr ratios were elevated in ArKO mice, renal mRNA levels of transient receptor potential cation channel vallinoid subfamily member 5 (TRPV5), TRPV6, calbindin-D28k, the Na+/Ca+ exchanger (NCX1), and the PMCA1b were significantly decreased, and klotho mRNA and protein levels were elevated. Estradiol treatment of ArKO mice normalized urinary calcium excretion, renal mRNA levels of TRPV5, calbindin-D(28k), PMCA1b, and klotho, as well as protein levels of calbindin-D28k and Klotho. ArKO mice treated with estradiol had significantly greater PMCA activity than either untreated ArKO mice or WT mice. CONCLUSIONS: Estrogen deficiency caused by aromatase inactivation is sufficient for renal calcium loss. Changes in estradiol levels are associated with coordinated changes in expression of many proteins involved in distal tubule calcium reabsorption. Estradiol seems to act at the genomic level by increasing or decreasing (klotho) protein expression and nongenomically by increasing PMCA activity. PMCA, not NCX1, is likely responsible for extruding calcium in response to in vivo estradiol hormonal challenge. These data provide potential mechanisms for regulation of renal calcium handling in response to changes in serum estrogen levels.


Assuntos
Aromatase/deficiência , Cálcio/metabolismo , Regulação da Expressão Gênica , Cálculos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Menopausa/metabolismo , Absorção , Animais , Calbindina 1 , Calbindinas , Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Glucuronidase/biossíntese , Glucuronidase/genética , Hipercalciúria/genética , Hipercalciúria/metabolismo , Cálculos Renais/genética , Proteínas Klotho , Menopausa/genética , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/biossíntese , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Proteína G de Ligação ao Cálcio S100/biossíntese , Proteína G de Ligação ao Cálcio S100/genética , Trocador de Sódio e Cálcio/biossíntese , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPV/biossíntese , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...